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Abstract—MU-MIMO and OFDMA are two key techniques
in IEEE 802.11ax standard. Although these two techniques have
been intensively studied in cellular networks, their joint optimiza-
tion in Wi-Fi networks has been rarely explored as OFDMA was
introduced to Wi-Fi networks for the first time in 802.11ax. The
marriage of these two techniques in Wi-Fi networks creates both
opportunities and challenges in the practical design of MAC-
layer protocols and algorithms to optimize airtime overhead,
spectral efficiency, and computational complexity. In this pa-
per, we present DeepMux, a deep-learning-based MU-MIMO-
OFDMA transmission scheme for 802.11ax networks. DeepMux
mainly comprises two components: deep-learning-based channel
sounding (DLCS) and deep-learning-based resource allocation
(DLRA), both of which reside in access points (APs) and impose
no computational/communication burden on Wi-Fi clients. DLCS
reduces the airtime overhead of 802.11 protocols by leveraging
the deep neural networks (DNNs). It uses uplink channels to train
the DNNs for downlink channels, making the training process
easy to implement. DLRA employs a DNN to solve the mixed-
integer resource allocation problem, enabling an AP to obtain
a near-optimal solution in polynomial time. We have built a
wireless testbed to examine the performance of DeepMux in
real-world environments. Our experimental results show that
DeepMux reduces the sounding overhead by 62.0%∼90.5% and
increases the network throughput by 26.3%∼43.6%.

Index Terms—IEEE 802.11ax, machine learning, deep neural
network, Wi-Fi, multi-user MIMO, OFDMA, channel sounding,
resource allocation

I. INTRODUCTION

After two decades of evolution from its genesis, Wi-Fi
technology has become the dominant carrier of the Internet
traffic [1] and penetrated every aspect of our lives. With
the continuous proliferation of the Internet-based applica-
tions, Wi-Fi market is growing at an unprecedented rate, and
more than four billion Wi-Fi devices have shipped in 2019
alone [1]. To serve the large number of Wi-Fi devices and meet
their high data rate demands, Wi-Fi networks are evolving
from 802.11n/ac to 802.11ax so that a Wi-Fi access point
(AP) is capable of utilizing the spectrum more efficiently
and accommodating more Wi-Fi clients at the same time.
Compared to the carrier-sense-based 802.11n/ac, 802.11ax
features centralized resource allocation and fine-grained inter-
device synchronization. With these two features, it introduces
orthogonal frequency-division multiple access (OFDMA) and
uplink multi-user multiple-input multiple-output (MU-MIMO)
techniques for the first time.
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Although OFDMA and MU-MIMO has been well studied
in cellular networks (see Table I), their joint optimization in
Wi-Fi networks remains scarce because OFDMA is introduced
to Wi-Fi networks in 802.11ax for the first time. Given that
cellular and Wi-Fi networks have different PHY (physical)
and MAC (medium access control) layers, and that base
stations (BSs) and APs have very different computational
power, the MU-MIMO-OFDMA transmission schemes de-
signed for cellular networks may not be suited for Wi-Fi
networks, necessitating research efforts to innovate the MU-
MIMO-OFDMA design for 802.11ax networks. Particularly,
the MU-MIMO-OFDMA transmission in 802.11ax faces two
challenges. First, to perform downlink MU-MIMO transmis-
sions, an AP needs to have channel state information (CSI)
for the construction of beamforming filters so that it can
concurrently send independent data streams to multiple Wi-Fi
clients on the same Resource Unit (RU). However, existing
802.11 channel sounding protocols are notorious for their
large airtime overhead, which significantly compromises the
throughput gain of MU-MIMO. Therefore, a low-overhead
channel sounding protocol is needed. Second, the marriage
of MU-MIMO and OFDMA largely expands the optimization
space of resource allocation at an 802.11ax AP, making it
infeasible to pursue an optimal resource allocation solution
in real time due to the limited computational power of APs.
Therefore, a low-complexity, yet efficient, algorithm is needed
for an AP to solve the resource allocation problem.

In this paper, we study the channel sounding and resource
allocation problems for downlink transmissions in an 802.11ax
Wi-Fi network, where an AP serves many stations (STAs)
on a set of pre-defined RUs jointly using MU-MIMO and
OFDMA techniques. We assume that the AP is equipped
with multiple antennas, while each STA is equipped with
one antenna. In such an 802.11ax network, we propose a
practical scheme, called DeepMux, to enhance the efficiency
of downlink MU-MIMO-OFDMA transmissions by leveraging
recent advances in deep learning (DL). DeepMux addresses the
above two challenges using deep neural networks (DNNs), and
it mainly comprises the following two key components: i) DL-
based channel sounding (DLCS), and ii) DL-based resource
allocation (DLRA). Both of them reside in APs and impose
no computational/communication burden to the STAs.

To reduce the channel sounding overhead, DLCS in Deep-
Mux compresses the frequency-domain CSI during the feed-
back procedure by leveraging the compression capability of
DNNs. Specifically, instead of reporting CSI on all the grouped
tones, each STA only reports the quantized CSI on a small
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number of tones to the AP. Based on the limited CSI, the AP
infers CSI over all tones using well-trained DNNs. Particularly,
the AP takes advantage of channel reciprocity and uses uplink
CSI, which is easy to obtain, to train the DNNs for downlink
CSI, making the training process easy to conduct.

To obtain a near-optimal resource allocation solution in real
time at the AP, DLRA in DeepMux employs a DNN to solve a
mixed-integer non-linear programming (MINLP) optimization
problem. Specifically, DLRA decouples the complex resource
allocation optimization problem into two sub-problems: RU
assignment and power allocation. A DNN is then employed
to compute a sub-optimal solution to the RU assignment sub-
problem. Once RU assignment is determined, the original
MINLP problem degrades to a linear programming (LP)
problem, which is easy to solve.

The contributions of this paper are summarized as follows.
• We have designed DLCS, a DL-based channel sounding

protocol for 802.11ax networks. DLCS employs an online
training process and requires no efforts from STAs.
Numerical results show that DLCS is capable of reducing
the channel sounding overhead by 62.0%∼90.5% without
sacrificing CSI feedback accuracy.

• We have designed DLRA, a DL-based resource allocation
algorithm for 802.11ax APs to perform efficient downlink
transmissions. Numerical studies show that DLRA is
capable of yielding a sub-optimal solution to MINLP
resource allocation problems in polynomial time.

• By combining DLCS and DLRA, we have designed
DeepMux to enable efficient downlink MU-MIMO-
OFDMA transmissions in 802.11ax networks. We have
evaluated DeepMux on a wireless testbed. Experimental
results show that DeepMux improves network throughput
by 26.3%∼43.6% compared the greedy utilization of DoF
by strongest STAs on each RU.

The remainder of this paper is organized as follows. Sec-
tion II surveys the related work. Section III describes the
existing MU-MIMO protocols and discusses the underlying
challenges. Section IV explains DeepMux in nutshell. Sec-
tion V delineates the proposed DLCS protocol, and Section VI
describes the DLRA algorithm. Section VII presents our
experimental results. Section VIII concludes the paper.

II. RELATED WORK

We focus our literature review on channel sounding and
resource allocation in both Wi-Fi and cellular networks.

A. Channel Sounding

Channel Sounding for Wi-Fi: The sounding overhead issue
in Wi-Fi networks has been in focal point of view since
the accommodation of MU-MIMO in IEEE 802.11 standards.
Existing research efforts have been invested to tackle this issue
by optimizing channel sounding parameters [2]–[4], seeking
new channel sounding paradigms [5], [6], or compressing
CSI frames [7], [8]. As the pioneering trials of reducing
sounding overhead, research efforts in [2]–[4] have exploited
the semi-static nature of Wi-Fi networks to adaptively reduce
the frequency of channel sounding and avoid unnecessary

sounding overhead. Implicit channel sounding has also been
studied for rectifying sounding overhead [5], [6]. Although
implicit channel sounding can significantly lower the overhead,
it requires extra hardware for channel calibration and thus
may not be amenable to low-cost Wi-Fi networks. DeepMux
is orthogonal to these works as DLCS neither manipulates
the channel sounding frequency nor employs implicit channel
sounding.

[7] and [8] are two prior efforts that reduce the channel
sounding overhead by compressing CSI in the frequency
domain. However, these two efforts require coordination from
Wi-Fi clients to fully or partially compress CSI. In contrast,
DLCS runs solely on Wi-Fi routers and requires no coordi-
nation from Wi-Fi clients. Simply put, DLCS is transparent
to Wi-Fi clients. DLCS also differs from these two works in
terms of computational complexity. Specifically, [7] and [8]
require Wi-Fi clients to estimate CSI for all frequency tones
while DLCS requires Wi-Fi clients to estimate CSI only for a
small number of tones.
Learning-Based Channel Sounding in Cellular Networks:
Sounding overhead is also a critical problem in cellular net-
works. Temporal correlation [9]–[11] and spatial correlation
[9] have been harvested to remove the redundancy of CSI
and reduce the airtime overhead of CSI acquisition. DeepMux
differs from these works as it focuses on the frequency domain.
Frequency-domain correlation of CSI has been studied in [12]
and [13] to reduce the channel sounding overhead in cellular
networks. DeepMux differs from these works because DLCS is
transparent to users (i.e., imposing no computation on users).
In addition, CSI in cellular networks is very different from
that in Wi-Fi networks. DeepMux is meticulously tailored
for Wi-Fi networks. Finally, most prior works are limited
to theoretical investigations and numerical evaluations while
DeepMux takes into account incumbent Wi-Fi protocols and
has been validated in practical indoor wireless environments.

B. Resource Allocation

Table I summarizes existing resource allocation schemes
in cellular and Wi-Fi networks. Clearly, DeepMux differs
from existing works in terms of objective, network scenario,
transmission mode, or computational complexity. In what
follows, we elaborate the existing studies and point out the
differences between DeepMux and these works.
Resource Allocation for Wi-Fi Networks: Recently, [14]
has studied downlink OFDMA in wireless local area net-
works (WLANs) and showed that its performance is highly
dependent on the resource assignment strategies at APs. This
problem has been followed in [15], with the objective of
improving the fairness among users. DLRA differs from the
proposed resource allocation scheme in [15] as it focuses on
pursuing a sub-optimal resource allocation scheme with a low
computational complexity. [16] has considered the throughput
maximization under the assumption that a user can be assigned
to at most one RU and offered a solution for both uplink and
downlink transmissions. Compared to [16], DLRA expands
the problem scope by allowing multiple RUs to serve a
user and also by allowing an RU to serve multiple users
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TABLE I: A summary of resource allocation schemes in Wi-Fi
and cellular networks, where n denotes the number of active
users served by an AP or a BS.

Objective Network Mode MU-MIMO Polynomial
complexitysum-rate Fairness Latency Energy Wi-Fi Cellular Uplink Downlink

DeepMux X X X X O
(
n2.5

)
[15] X X X X O

(
n3
)

[16] X X X X
[17], [18] X X X X

[19] X X X
[20] X X X O

(
n3
)

[21] X X X
[22] X X X X X
[23] X X X O

(
n3
)

[24] X X X X
[25] X X X X O

(
n2.5

)
[26]–[28] X X X X

concurrently. [17] and [18] are the only works considering
downlink MU-MIMO-OFDMA in WLANs. However, these
two works employ greedy iterative algorithms to compute a
feasible solution. In contrast, DLRA employs learning-based
approach and offers a solution in polynomial time. [19]–[21]
studied resource allocation in uplink OFDMA WLANs, which
is not the scope of our work.
Resource Allocation in Cellular Networks: Since there
are many research results of resource allocation in cellular
networks, we focus our review on MIMO-OFDMA techniques.
[22] has studied the resource allocation problem under latency
constraint. However, the complexity of the proposed solution
is prohibitively large. [23] has studied the resource allocation
problem with the objective of enhancing energy efficiency.
The authors has proposed an algorithm with polynomial-time
complexity. However, it only works for single-user MIMO-
OFDMA networks. [24] and [25] have investigated the re-
source allocation problem for MU-MIMO-OFDMA cellular
networks and proposed low-complexity algorithms to compute
the solutions. However, these two works focus on maximizing
energy efficiency. In contrast, DeepMux aims to maximize
network throughput. [26]–[28] have explored downlink MU-
MIMO-OFDMA transmissions in different network scenarios.
These research efforts have proposed greedy algorithms to
pursue optimal solutions for maximizing network throughput.
DeepMux is very different from these works in terms of
network settings and computational complexity.

III. PROBLEM DESCRIPTION

Consider an 802.11ax network comprising a multi-antenna
AP and many single-antenna STAs. Denote Nap as the number
of antennas on the AP. Denote Nsta as the number of STAs in
the network. We consider a dense network where Nsta > Nap.
In 802.11ax standard, OFDMA and MU-MIMO techniques
have been included for efficient communications between the
AP and its serving STAs. Fig. 1 shows the four possible RU
configurations when the network works on 20 MHz bandwidth.
As the figure shows, the total number of valid tones is 242,
and an RU could consists of 26, 52, 106, or 242 tones.
When MU-MIMO is enabled, an RU can serve multiple STAs,
depending on the channel condition, data traffic, and network
setting. In the downlink transmissions, in order for an AP to
serve multiple STAs per RU, it needs to first perform channel
sounding to obtain the CSI and then construct the spatial filters
for beamforming. By doing so, independent data streams can

Fig. 1: Four different RU configurations over 20 MHz as
specified in IEEE 802.11ax [29].

Fig. 2: Existing channel sounding protocol in IEEE 802.11ax.

be delivered to different STAs simultaneously. In this process,
CSI is crucial. In what follows, we first present the existing
channel sounding protocol and then state our design objectives.

A. 802.11 Channel Sounding Protocol in Nutshell

Fig. 2 shows the channel sounding protocol specified in
802.11ax, and we elaborate on it in the following.
Announcement: The AP initiates the channel sounding pro-
cedure by broadcasting a Null Data Packet Announcement
(NDPA) frame, which contains the addresses of intended
STAs. Then, the AP sends out a Null Data Packet (NDP)
frame for STAs to estimate the downlink channels between
themselves and the AP.
Channel Estimation: Each STA leverages the preamble in the
NDP frame to estimate the complex-valued channel vectors be-
tween the AP and itself. Reporting the raw channel vectors to
the AP, however, entails too much airtime overhead. To reduce
the airtime overhead, each STA employs Givens rotations and
tone grouping to pre-process its estimated channel vectors. The
pre-processing leads to a CSI compression in both spatial and
spectral domains.
Spatial compression: In its general form, the spatial compres-
sion includes a series of Givens rotations, pre-multiplications,
and post-multiplications applied to the right singular vectors
of a channel matrix to extract its spatial information [29]–
[31]. Each rotation or pre-multiplication is realized by an
angle, which stores a part of spatial information [32]. On
each tone, two sets of angles will be generated: Nψ ψ-type
angles from Givens rotations and Nφ φ-type angles from pre-
multiplications, where Nψ = Nφ =

(
2NapNr −N2

r −Nr
)
/2

and Nr is the number of the STA’s antennas in general case
(we assumed Nr = 1 in this paper). For notional simplicity,
we denote these two sets over all tones as Ψ = {ψi,k}∀i,k and
Φ = {φi,k}∀i,k, where i is the angle index (1 ≤ i ≤ Nψ), k
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is the tone index (1 ≤ k ≤ Ntone), and Ntone is the number
of tones.

Generally speaking, ψi,k ∈ [0, π/2) and φi,k ∈ [0, 2π). The
angles will be quantized before being sent to the AP. In 802.11
standards, two types of quantization are specified for feedback:
• Feedback type 0 uses 5 bits for each angle in Ψ and 7

bits for each angle in Φ.
• Feedback type 1 uses 7 bits for each angle in Ψ and 9

bits for each angle in Φ.
Tone Grouping: As Wi-Fi networks typically work in indoor
scenarios for short-range communications, their coherence
bandwidth tends to be large. Hence, tone grouping has been
employed to bond Ng tones. In 802.11ax standard [29],
Ng = {1, 4, 16}. Particularly, Ng = 1 means that no grouping
is employed. Also, Ng = 16 is only allowed with feedback
type 1.
Beamforming Report (BR): The BR frames carry the quan-
tized angles (Ψ and Φ) from each STA to the AP. These
frames are also used to carry the channel strength information
(average SNR and SNR deviation for each group of tones)
from each STA to the AP. Based on the reported SNR
information, the AP manages available spectral and power
resources to serve STAs.
Polling: Polling is a mechanism to coordinate the report
process among STAs. Once all STAs have prepared their BR
frames, the AP sends trigger beamforming report poll (TBRP)
frames sequentially. Each TBRP frame coordinates a group
of STAs to send their BR frames through uplink MU-MIMO
as illustrated in Fig. 2. The AP decodes the BR frames and
identifies the sender of each report using the MAC address
in the corresponding frame. After polling all the groups, the
AP obtains information required for downlink MU-MIMO
transmission.

B. Design Objectives and Challenges

The objectives of this work are to design and evaluate a
practical, yet efficient, downlink MU-MIMO-OFDMA trans-
mission scheme for 802.11ax networks. Towards these objec-
tives, we face the following two challenges.
Challenge 1 – Channel Sounding Overhead: Channel sound-
ing is crucial for beamforming in downlink MU-MIMO trans-
missions. However, the existing channel sounding protocol
in Fig. 2 entails a large airtime overhead and significantly
compromises the throughput gain of MU-MIMO. For instance,
consider an AP with 8 antennas and a single-antenna STA
working on 160 MHz bandwidth. Even with the tone grouping,
the angles information in a single report could be as large
as 7.0 kB1, which is far beyond a maximum transmission
unit (2.3 kB) in WLANs [33]. This means that a BR frame in
Fig. 2 can take more than 3 packets for CSI feedback. Such a
large airtime overhead not only consumes network bandwidth
but it also ruins the freshness of CSI for beamforming.
Challenge 2 – Joint Resource Allocation: The marriage of
MU-MIMO and OFDMA creates a joint resource allocation
problem for the AP, which involves RU assignment for users

1In this case, Nψ = Nφ = 7 and feedback type 1 is used over 498 groups
of tones. Representation of angles requires 55, 776 bits ≈ 7.0 kB.

Fig. 3: The overview of DeepMux.

and power allocation for MIMO streams. This problem is
complicated as it crosses spectral and power domains. Solving
the resource allocation problem is time-constrained as the
coherence of wireless channels degrades over time. It is there-
fore important for an AP to have a low-complexity algorithm
that can find an efficient resource allocation solution in real
time. A classical approach for solving this problem is to first
formulate the problem as an optimization problem and then
employ existing optimization solvers to compute the optimal
solution. This approach, however, is infeasible in practice
due to the high computational complexity from an exhaustive
search over RU assignment instances. For example, consider a
small 802.11ax network where a 4-antenna AP serves 6 single-
antenna STAs over four 52-tone RUs on 20 MHz bandwidth.
We formulate the resource allocation problem as an MINLP
optimization problem and employ CVX package to solve it for
a given RU assignment. Our observation is that it takes up to
342 minutes to find an optimal solution with search over 223.3

RU assignment instances. Such a large delay makes resource
allocation infeasible for practical use and urges us to devise a
low-complexity resource allocation mechanism.

IV. OVERVIEW OF DEEPMUX

In this section, we present an overview of DeepMux, which
leverages recent advances in DNNs to address the challenges
for downlink MU-MIMO-OFDMA transmissions in 802.11ax
networks. Fig. 3 shows a high-level structure of DeepMux. It
mainly comprises two components: DLCS and DLRA. In what
follows, we present the basic idea of these two components.

A. Basic Idea of DLCS

DLCS is an enhanced 802.11 channel sounding protocol
aiming to reduce the sounding overhead. Its design is based
on the following two observations: i) wireless channels in
local area networks are highly correlated in the frequency
domain; and ii) tone grouping in the current 802.11 sounding
protocol is not an efficient approach for feedback compression.
Motivated by the success of DNNs for image compression, we
propose to use DNNs to reduce the channel sounding overhead
in the CSI feedback process. Specifically, instead of reporting
CSI over a large number of tones, each STA only reports CSI
over a small number of tones. Based on the reported CSI over
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sparse tones, the AP attempts to infer the CSI over all tones
using DNNs.

While the idea is straightforward, an important question is
how to train the DNNs so that they can infer the full CSI
based on the limited feedback. For this question, one solution
is that the AP asks every STA to report a large amount of
CSI over all tones at the beginning and uses the large amount
of CSI to train the DNNs. This solution, however, imposes
heavy computational and communication burdens on STAs,
and thus is not amenable to implementation. To circumvent
this issue, we use uplink CSI, instead of downlink CSI, for
the training of DNNs. This is because uplink and downlink
channels have the same profile in the frequency domain, thanks
to the channel reciprocity [34]. In other words, uplink and
downlink channels bear the same shape over frequency domain
even without channel calibration, making it possible for DNNs
to learn the downlink frequency-domain CSI correlation using
uplink CSI samples in the absence of channel calibration.

Additionally, an AP can easily obtain uplink CSI over all
tones. Obtaining uplink CSI requires no effort from STAs,
making the training process transparent to the STAs. When-
ever an AP receives packets from STAs, it can measure the
uplink channel based on the packets’ preamble. We note that,
different from prior channel reciprocity applications, channel
calibration is not needed for our application. Details of DLCS
are presented in Section V.

B. Basic Idea of DLRA
The marriage of MU-MIMO and OFDMA creates a chal-

lenge for an 802.11ax-enabled AP to optimally allocate the
available spectral and power resources in a reasonable amount
of time. To address this challenge, DeepMux formulates the
resource allocation problem as an optimization problem. In
its original form, the optimization problem is an MINLP
problem, where its binary variables correspond to RU as-
signment sub-problem and its continuous variables correspond
to power allocation sub-problem. DeepMux approaches the
MINLP problem by reformulating it into a mixed-integer linear
programming (MILP) problem. Unlike an MINLP problem, an
MILP problem can be systematically solved in two steps: i) an
organized search mechanism over discrete instances of the
feasible region (RU assignment instances), and ii) an interior-
point algorithm that solves the convex sub-problem (power
allocation) for a given RU assignment.

Given that MILP is NP-hard in general, we take advantage
of recent advances in DNNs to determine the optimal RU-
assignment in the first step. Specifically, DeepMux employs
a DNN to compute the values for the binary optimization
variables in the MILP problem. Such a DNN is trained offline,
in a supervised manner, using the SNR reports from STAs, as
shown in Fig. 3. After the binary variables (corresponding to
the RU assignment sub-problem) are determined, the MILP
problem degrades to a linear programming problem, which is
easy to solve. Details of DLRA are presented in Section VI.

V. DLCS: A LOW-OVERHEAD CHANNEL SOUNDING

DLCS enhances the 802.11 channel sounding protocol in
Fig. 2 by reducing the airtime consumed by BR frames. This

1 30 60

Depth (tone)

0

0.5

1

C
o

rr
e

la
ti

o
n D=16, C

D
=0.77

(a) Correlation of angles in Ψ.

1 30 60

Depth (tone)

0

0.5

1

C
o

rr
e
la

ti
o

n D=16, C
D

=0.75

(b) Correlation of angles in Φ.

Fig. 4: Spectral correlation of angles in Ψ and Φ.
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Fig. 5: DNNs’ structure at the AP for inferring Ψ and Φ based
on limited feedback.

is done through sparsification of Ψ and Φ angles in the
frequency domain. That is, each STA reports CSI angles over
a few tones, and the AP infers the CSI angles for all tones
based on the sparsified feedback using DNNs.

Before diving into DLCS, we first take a look at the
frequency-domain correlation of CSI angles. We collected
50, 000 Ψ and Φ samples in an office environment to measure
the frequency-domain correlation. For a sequence x ∈ R1×L,
we define CD as its correlation at depth D by letting:

CD = Em

[
x(m+1:m+D)x

T
(m+D+1:m+2D)

‖x(m+1:m+D)‖‖x(m+D+1:m+2D)‖

]
, (1)

where x(i:j) , [xi, xi+1, · · · , xj ] with xi being the ith
element in x, and (·)T is transpose operator. Fig. 4 shows the
correlation of the collected CSI angles at different tone depths.
It can be seen that, when the tone depth is greater than 16 (i.e.,
D > 16), the correlation is still considerable for both Ψ and
Φ angles. This means that, grouping the angles over Ng tones
(simply by averaging operation) cannot fully harvest such a
significant correlation for compression purpose. On the other
hand, tone grouping may lead to an inaccurate feedback when
Ng > 16. DLCS is a more sophisticated compression approach
to reduce the sounding overhead by exploiting inter-tone CSI
correlation.

In what follows, we first present the settings of DNNs and
then elaborate on their training (exploration) and sparsification
(exploitation) phases separately.

A. DNNs Settings

As shown in Fig. 5, DLCS employs DNNs at the AP to
infer full CSI angles based on a sparsified feedback. One
DNN is used for the angles in Ψ and another DNN is used
for the angles in Φ. The dimension of input layer is S,
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corresponding to the quantized CSI angles over S tones. The
value of S is selected through experimental studies, which
will be shown shortly. The DNNs have Ntone neurons on the
output layer, corresponding to the inferred CSI angles over all
tones (e.g., Ntone = 234 for all the nine 26-tone RUs over
20 MHz bandwidth). DNNs have multiple hidden layers, say
L hidden layers. The dimension of the ith hidden layer is di.
Each hidden layer is fully-connected, followed by a batch-
normalization layer to speed up the training convergence [35].
Rectified linear unit (ReLU) activation function is used for
each layer. Since the DNNs are designed for interpolation
purpose, they are in an enlarging trapezoid shape.

B. Training Phase

As we explained before, the AP does not require STAs to
report a large amount of downlink CSI angles for training
DNNs because doing so imposes heavy computational and
communication burdens on STAs. Instead, the AP uses its
estimated uplink channels to calculate CSI angles and train
the DNNs by taking advantage of wireless channel reciprocity.
Since the DNNs focus only on learning the frequency-domain
properties of CSI, channel calibration is not necessary to
compensate the response difference between Tx and Rx RF
chains.

Using the uplink CSI to train the DNNs have two benefits.
First, it is easy for an AP to collect a large amount of samples
for training purpose. As long as an STA sends a packet, the
AP can estimate the uplink channel and use it for generating
angles and training DNNs. Simply put, the AP requires zero
effort to obtain dataset for training DNNs. Second, it tends
to offer better training results as uplink CSI does not suffer
from tone grouping and quantization errors. If the AP wants
to use downlink CSI for training DNNs, quantization of the
estimated downlink CSI at STAs is needed to facilitate the
feedback. This introduces quantization error and degrades the
training performance. In contrast, using uplink CSI for training
purpose does not suffer from this issue.

In what follows, we describe the operations of DNNs
training at the AP. No extra effort is needed at the STAs.
Data Collection: AP and STAs work in their ordinary mode.
Whenever the AP receives a packet, it decodes the packet and
records its estimated uplink channel on all tones. Then, the AP
performs spatial compression on the estimated uplink channel
over every tone, as specified in 802.11 standards [29] to collect
CSI angles (i.e., Ψ and Φ). The generated CSI angles are
organized in batches and used for training DNNs.
Data Preprocessing: As shown in Fig. 3, each batch of
CSI angles are pre-processed before being used for training
the DNNs. The pre-process is to make the angles zero-mean
and unite-variance over all tones [36]. Albeit simple, this
pre-process significantly improves the convergence of DNNs
[36], especially when gradient descent algorithms are used
for weight adaptation [37]. The AP also quantizes these pre-
processed angles with different numbers of bits and keeps all
versions to examine their performance.
Training Parameters and Provisions: Normalized mean
squared error (NMSE) loss function is employed to measure
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Fig. 6: DLCS workflow in sparsification (exploitation) phase.

the sparsification error. The DNNs are trained using Adam
optimizer [38]. The training is performed with an initial learn-
ing rate of 0.001 and decaying rate of 0.98 following a step-
wise approach. The batch size is set to 128. All parameters
are initialized using Xavier initialization [39]. Dropout [40] is
applied to all hidden layers to prevent over-fitting and improve
the generalization of the model. All DNNs are trained end-to-
end using Pytorch v1.4 library [41].

C. Sparsification Phase

After completing the training phase, the AP initiates the
sparsification phase. That is, the network begins to use the
trained DNNs to reduce the channel sounding overhead when
applicable. To do so, the AP informs all STAs of Sψ , Sφ, qψ ,
and qφ, where Sψ and Sφ are the number of tones for which
STAs report angles of Ψ and Φ, respectively. qψ and qφ are
the number of bits for quantizing each angle in Ψ and Φ,
respectively. Fig. 6 illustrates the CSI reporting process when
the AP is equipped with the trained DNNs. In what follows,
we elaborate the operations at an STA and the AP, respectively.
Operations at an STA: Referring to Fig. 2, when MU-
MIMO transmission is triggered by an NDPA frame, each
STA estimates the downlink channel vector H(k) based on
the received NDP frame, where k = {kψ, kφ} is the selected
tone indices, kψ ∈ {b0.5Ntone/Sψc, b1.5Ntone/Sψc, · · · ,
b(Sψ − 0.5)Ntone/Sψc} is the set of tone indices for which
STAs report Ψ and kφ ∈ {b0.5Ntone/Sφc, b1.5Ntone/Sφc,
· · · , b(Sφ − 0.5)Ntone/Sφc} is the set of tone indices for
which STAs report Φ. Spatial compression is performed on
H(k) to obtain the angles in Ψ and Φ, which are then
quantized using qψ and qφ bits (using the quantization method
in [31]), respectively. In the BR frame shown in Fig. 2, instead
of reporting CSI angles on all groups of tones, the STAs
report ψ and φ angles only on those Sψ tones and Sφ tones,
respectively. In addition, each STA also reports the measured
SNR values to the AP in the BR frame, following the existing
802.11 protocol [31].
Operations at the AP: Upon receiving the reports from an
STA, the AP extracts the quantized angles and SNR reports.
As illustrated in Fig. 6, the received angles are then fed into
the DNNs to infer the angles over all tones. The output of the
DNNs are then used to construct the beamforming vectors for
downlink MU-MIMO transmissions.

D. Parameter Selection and Numerical Results

A question to ask is how to choose the values for spar-
sification parameters Sψ , Sφ, qψ , and qφ. In our design,
the parameter values are selected to ensure the end-to-end
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TABLE II: End-to-end error of DNNs in inferring the angles
in Ψ.

Sψ=5 Sψ=6 Sψ=7 Sψ=8 Sψ=9
qψ=3 bits 10.55% 10.63% 12.00% 8.99% 9.88%
qψ=4 bits 5.85% 4.95% 5.03% 3.86% 3.29%
qψ=5 bits 3.97% 2.77% 2.52% 1.93% 1.32%
qψ=6 bits 3.52% 2.16% 1.53% 1.35% 1.14%
qψ=7 bits 3.19% 2.08% 1.16% 1.14% 0.80%

TABLE III: End-to-end error of DNNs in inferring the angles
in Φ.

Sφ=5 Sφ=6 Sφ=7 Sφ=8 Sφ=9
qφ=3 bits 26.51% 22.70% 27.39% 29.83% 21.57%
qφ=4 bits 8.30% 6.63% 6.33% 6.09% 5.73%
qφ=5 bits 3.01% 2.40% 2.19% 2.14% 1.85%
qφ=6 bits 2.67% 2.06% 1.10% 1.01% 0.76%
qφ=7 bits 2.30% 1.07% 0.82% 0.77% 0.57%

errors below a pre-defined threshold, which is empirically set.
Specifically, after the AP collects the sufficient channel data,
it first trains DNNs under different values of sparsification
parameters and then records the end-to-end error in the test
phase. The AP selects the values for sparsification parameters
that yield the lowest sounding overhead while meeting the
end-to-end error requirement (below a pre-defined threshold).

To illustrate this selection approach, we resort to exper-
iments. We implemented DLCS in an indoor environment
and collected about 50, 000 angle samples in the uplink over
20 MHz bandwidth. We tuned those parameters and examined
the performance of well-trained DNNs. As a possible end-to-
end error threshold in inferring the angles, we use error from
the tone grouping mechanism. Table II and Table III present
our results. In each table, the DNN settings which meet the
end-to-end error requirement are highlighted in green color.
Based on the results, we choose (Sψ = 9, qψ = 5) which leads
to 0.19 bits/angle/tone overhead and 1.32% error for the angles
in Ψ. We choose (Sφ = 6, qφ = 7) for the angles in Φ which
leads to 0.18 bits/angle/tone overhead and 1.07% error. Finally,
the DNNs we choose are a 9×16×32×64×128×234 DNN
for sparsification of Ψ and a 6×16×32×64×128×234 DNN
for sparsification of Φ. We note that the resultant parameter
values are scenario-specific. When an AP is moved to a new
scenario, it needs to re-tune the parameters to obtain the “best”
values for those parameters. Fortunately, the parameter re-
tuning process can be done by the AP automatically without
human intervention.

We now compare DLCS with existing 802.11 protocols in
terms of error and sounding overhead. Fig. 7 presents our
results. Particularly, TiGj in the figure means feedback type i
is employed and Ng = j tones are grouped for feedback.
Fig. 7(a) shows the superior performance of DLCS in terms
of error. DLCS reaches 1.19% error, while T0G4, T1G4, and
T1G16 reach 2.48%, 1.64%, and 7.05% error, respectively.
Fig. 7(b) shows that DLCS entails significantly lower over-
head compared to existing 802.11 protocols. DLCS reaches a
sounding overhead as low as 0.19 bits/angles/tone while T0G4,
T1G4, and T1G16 reach 1.50, 2.00, and 0.50 bits/angles/tone
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Fig. 7: Error and overhead comparison between DLCS and
existing 802.11 protocols [29].

overhead, respectively. This means DLCS reduces sounding
overhead by 62.0%∼90.5%.

VI. DLRA: A LIGHTWEIGHT RESOURCE ALLOCATION

In this section, we employ DNNs to facilitate the re-
source allocation problem at the AP, which includes two sub-
problems: RU assignment and power allocation. Recall that
the AP recovers angles in Ψ and Φ using DNNs, and it also
collects SNR values over all tones. The angles in Ψ and Φ
can be used to partially reconstruct the right singular vectors of
channel matrices, which can be leveraged to mitigate inter-user
interference in the downlink transmissions. The SNR values
provide the information of channel quality, which can be used
to optimize the resource allocation. In what follows, we first
formulate the resource allocation problem as an optimization
problem, and then develop a learning-based algorithm to solve
it. Finally, we offer numerical results to show the effectiveness
of the proposed learning-based algorithm.

A. Problem Formulation and Reformulation

Problem Formulation: At an AP, denote N as the set of
STAs that it serves in the downlink MU-MIMO-OFDMA
transmission. Denote R as the set of RUs, which are the
granularity for assignment. Let |N | = Nsta and |R| = Nru.
We define a binary variable zi,j to indicate the RU assignment.
Specifically, zi,j = 1 if RU j is assigned to STA i; and zi,j = 0
otherwise. Denote pi,j as the portion of the AP’s power
allocated to STA i on RU j. Denote Wj as the bandwidth of
RU j. Denote γi,j as reported SNR at STA i on RU j. Denote
ri,j as the data rate achieved by STA i on RU j. Denote ri as
the achievable data rate for STA i. Denote Ω(·) as the mapping
function from SNR to data rate.

Then, the resource allocation problem with the objective of
maximizing total STAs’ data rate can be expressed as:

maximize
p,z

∑
i∈N

ri (2a)

s.t. ri ≤
∑
j∈R

ri,j , i∈N ; (2b)

ri,j ≤Wjzi,jΩ (pi,jγi,j) , i∈N , j∈R; (2c)∑
i∈N

zi,j ≤ Nap, j∈R; (2d)∑
i∈N ,j∈R

pi,j ≤ 1 . (2e)



8

Approximated region

SNR

0 1000 2000 3000 4000

0
3

6
9

1
2

D
a

ta
 r

a
te

 (
b

it
/s

/H
z)

Approximated boundary

MCS-based data rate (w/o overhead)
Shannon capacity

MCS-based data rate (w/ overhead) 
Approximated boundary

MCS-based data rate (w/o overhead)
Shannon capacity

MCS-based data rate (w/ overhead) 

Gap from 

MCS

Gap by 

overhead
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In this formulation, z = {zi,j}i∈N ,j∈R and p =
{pi,j}i∈N ,j∈R are optimization variables. {γi,j}i∈N ,j∈R,
{Wj}j∈R, and Nap are given parameters. Constraint (2b)
calculates the achieved data rate by an STA over all RUs. Con-
straint (2c) defines the achievable rate region. Constraint (2d)
is spatial DoF constraints on the maximum number of STAs
that can be allocated to an RU. Constraint (2e) characterizes
the power budget at the AP.
Achievable Rate Region: A classical way to map SNR to
data rate is Shannon capacity. However, Shannon capacity is
a theoretical bound and hard to reach in practice. In 802.11
networks, adaptive MCS (modulation and coding scheme) is
used to adjust the data rate based on SNR. As shown in
Fig. 8, there is a significant gap between Shannon capacity
and MCS-based data rate. Therefore, Shannon capacity is not
an ideal function for our purpose. Moreover, when taking into
account the overhead from OFDM cyclic prefix and pilot tones
in 802.11ax2, the achievable data rate becomes even lower,
as shown in Fig. 8. The achievable data rate region (MCS-
based rate with overhead) is characterized by a staircase curve,
which is non-convex function. To simplify the optimization,
we approximate the achievable rate region using a series of
linear constraints as illustrated by Fig. 8.

Mathematically, by defining γ as a measured SNR value,
we approximate the achievable rate region as follows:

Ω (γ) ≤ akγ + bk; k ∈ K, (3)

where ak and bk are given in Table IV as per IEEE 802.11ax;
and K , {1, 2, · · · , 13}. We note that the EVM in Table IV
is equivalent to the inverse of post-SNR of a decoded data
stream at a receiver. The relation of γ in (3) and the EVM
value in Table IV can be expressed as γ = 10−EVM/10.

Based on the EVM regions specified in Table IV, the
approximated achievable rate region with its boundaries is
shown in Fig. 8. Then, constraints in (2c) can be expressed
as:

ri,j ≤Wjzi,j(akpi,jγi,j + bk), i ∈ N , j ∈ R, k ∈ K. (4)

2 For 802.11ax with 20 MHz bandwidth, every 26-tone RU has 2 tones for
pilot.

TABLE IV: EVM specified in IEEE 802.11ax standard [29].
EVM (dB) [+∞,−5) [−5,−8) [−8,−10) [−10,−13) [−13,−16) [−16,−19) [−19,−22)
Modulation N/A BPSK BPSK QPSK QPSK 16QAM 16QAM
Coding rate N/A 1/2 3/4 1/2 3/4 1/2 3/4

Γ(EVM) N/A 1/2 3/4 1 3/2 2 3
ai 0.1067 0.0536 0.0457 0.0339 0.0170 0.0170 0.0085
bi 0 0.1679 0.2177 0.3359 0.6734 0.6718 1.3468

EVM (dB) [−22,−25) [−25,−27) [−27,−30) [−30,−32) [−32,−35) [−35,−∞) [−35,−∞)
Modulation 64QAM 64QAM 64QAM 256QAM 256QAM 1024QAM 1024QAM
Coding rate 2/3 3/4 5/6 3/4 5/6 3/4 5/6

Γ(EVM) 4 9/2 5 6 20/3 15/2 25/3
ai 0.0021 0.0018 0.0013 0.0008 0.0007 N/A 0
bi 2.3609 2.4605 2.6968 3.2806 3.3696 N/A 5.6250

Using (4), the resource allocation problem in (2) can be
re-defined as:

maximize
p,z

∑
i∈N

ri (5)

s.t. (2b), (2d), (2e), and (4).

The optimization problem in (5) is an MINLP problem.
The non-linear term is from (4), where binary and continuous
optimization variables are multiplied.
Problem Reformulation: To reduce the processing time, we
reformulate the MINLP problem (5) to an MILP problem by
leveraging a classic linearization technique [42]. To do so,
we assume that the SNR value is bounded. This is a valid
assumption in practice. Denote γmax as the maximum value
of SNR (e.g., 45 dB in our design) and define a constant
A = maxj,k{Wj(akγmax+bk)}. Then, (4) can be equivalently
expressed as:

ri,j ≤Wj(akpi,jγi,j + bk), i ∈ N , j ∈ R, k ∈ K. (6a)
0 ≤ ri,j ≤ zi,jA, i ∈ N , j ∈ R. (6b)

Therefore, the MINLP problem in (5) can be reformulated to
the following MILP problem:

maximize
p,z

∑
i∈N

ri (7)

s.t. (2b), (2d), (2e), and (6).

We note that the MINLP problem in (5) and the MILP prob-
lem in (6) have identical feasible region. The reformulation
does not alter the solution space. The new optimization prob-
lem involves 2NstaNru +Nsta continuous variables, NstaNru

binary variables, and 14NstaNru +Nsta +Nru +1 constraints.
Recall the example in Section III-B, where a 4-antenna AP
serves six STAs on four 52-tone RUs. By formulating the
resource allocation problem in the form of (7), off-the-shelf
optimization solver MOSEK [43] can find an optimal solution
within 5 seconds for most cases. In general, MILP is NP-hard.
Its computational complexity is still beyond the acceptable
range of a wireless AP device.

B. DLRA: A Deep-Learning-Based Resource Allocation

Solving an MILP problem is still beyond the computational
capacity of an 802.11ax-enabled AP to allocate its resources
for downlink transmissions. To reduce the computational
complexity, we take advantage of recent advances in DNNs.
Specifically, we first reformulate the resource allocation prob-
lem as an MILP problem as shown in (7), and then employ
a DNN to compute the binary variables. Once the binary
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variables are determined, the MILP problem degrades to a
linear programming problem, which is easy to solve. In what
follows, we focus on the design of a DNN to determine the
binary variables in (7).
DNN Settings: Fig. 9 shows the DNN-based approach in
training and sparsification (exploitation) phases. The input
of the DNN is the SNR values reported by the STAs. The
dimension of input layer is NstaNru. The DNN consists of
multiple hidden layers. Each hidden layer is fully-connected,
followed by a batch-normalization layer to speed up the
training convergence [35]. Sigmoid activation function is used
for each layer. The output layer has NstaNru neurons, each
of which corresponds to a binary variable in RU assignment
sub-problem. In our experiments, we consider the case where
an 8-antenna AP serves 20 STAs on 9 RUs. For this case,
the input and output layers both have 180 neurons, and the
overall DNN’s structure we trained for RU assignment is
180× 128× 128× 180.
Data Collection and Pre-processing: We collect 60, 000 SNR
reports from an office environment. Each report consists SNR
values over all the nine 26-tone RUs on 20 MHz bandwidth.
Every set of SNR values (20 SNR reports) will be flattened,
normalized, and then used for training the DNN as an instance
of its input. At the same time, the set of unprocessed SNR
values will be fed into (7). The output of (7) includes RU
assignment and power allocation coefficients. The resultant RU
assignment will be used as the reference output of the DNN
in its supervised training procedure. We use MOSEk v.9 [43]
to solve (7) for a given set of SNR values. Since data
generation process is pretty slow, we augment the training data
set by adding negligible noise to the original input samples.
Moreover, we set aside one third of input-output sample pairs
for test purpose. We augment the remaining samples 4.5 times.
Training Process: To train the DNN, we use NMSE loss
function. The outputs of (7) for given sets of SNR values
are used as reference outputs of the DNN in training loss
calculation. For training the DNN, we use Adam optimizer
[38] and PyTorch v1.4 library [41]. We also apply batch
normalization [35] and Xavier initialization [39] approaches
to accelerate the training process.
Post-Processing: The output of DNN will be post-processed in
two steps: binarization and correction. The output of DNN is
a vector comprising real values bounded between 0 and 1. We
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Fig. 10: Illustrating the performance of DLRA when compared
to an optimal solution.

apply a threshold-based binarization on outputs of the DNN to
transform them into binary entities. Once the binary vector is
obtained, we can use our domain knowledge to further polish
this vector. Two rules are followed in the correction step: i) If
the DoF constraint is violated on an RU, the STA with the
lowest SNR will be removed until the DoF constraint is met.
ii) When the DoFs on an RU are under-utilized, the STA with
the highest SNR will be activated if there is an assigned STA
with a lower SNR.
Computational Complexity: Referring to Fig. 9, the compu-
tational complexity of pre-processing and post-processing op-
erations is O (Nsta), provided that Nru<Nsta. For the trained
DNN, assuming that the size of hidden layer is proportional
to the size of input, its computational complexity is O

(
N2

sta

)
.

For a given RU assignment, MILP in (5) degrades to an LP
problem. The computational complexity of solving the LP
problem is O

(
N2.5

sta

)
. Therefore, the overall complexity of

DLRA is O
(
N2.5

sta

)
.

Numerical Results: After the DNN is trained, we use a set of
data samples to test its performance. We examine the accuracy
of DNN output when different thresholds are used for the
binarization post-processing. Fig. 10(a) shows the results. It
can be seen, DLRA reaches 98.9% accuracy when using 0.54
as the binarization threshold. This means that DLRA offers a
very accurate RU assignment. We measured the performance
gap between two cases, where the AP uses DLRA and where
the AP uses MILP problem for resource allocation. As shown
in Fig. 10(b), the results confirm that the DLRA almost reaches
the optimal performance.

VII. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of DeepMux
by comparing it with existing 802.11ax protocols.

A. Experimental Settings

Wireless Testbed and Experimental Setting: Fig. 11(a) and
Fig. 11(b) show the wireless testbed that we use to evaluate
DeepMux. The testbed has one AP and four STAs which are
built using USRP N210 devices and general computers. The
AP is equipped with 8 antennas while each STA is equipped
with one antenna. As shown in Fig. 11(c), the AP is placed
at a fixed location, while the four STAs have many random
locations to be placed.
Implementation of 802.11ax: The 802.11ax protocol in Fig. 2
is implemented on the testbed. The carrier frequency is set
to 2.484 GHz, and the bandwidth is set to 20 MHz. Due to
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Fig. 11: Illustrating our wireless testbed and test environment.
(a) Prototyped STA. (b) Prototyped AP. (c) Floor plan of tests.

the hardware limitation, the inter-frame spacing is equal to
one second. A frame has 256 tones in its OFDM modulation,
with 18 pilot tones, 216 payload tones, and 22 unused tones.
The 26-tone RU configuration (see Fig. 1) is used in our
study. The transmission power of the AP and STAs is set to
15 dBm. The signal processing modules at both AP and STAs
are implemented using C++ in GNURadio-Companion. LDPC
channel encoding and decoding are not implemented to reduce
the implementation complexity.
Implementation of DeepMux: DeepMux is implemented on
top of the 802.11ax protocol, and its DNNs are trained at the
AP using Pytorch v1.4 library [41]. To train DNNs, our data
collection campaign lasted three days. During the campaign,
low and moderate human activities (i.e., 0∼5 persons with
brisk walking speed) were observed in the environment shown
in Fig. 11(c). In this campaign, 100, 000 angles (50, 000
vectors in Ψ and 50, 000 vectors in Φ) on 234 tones were
collected for DLCS to train its two DNNs. Meanwhile, 60, 000
SNR reports were collected from the BR frames for DLRA to
train its DNN.

B. Performance Metrics

Error Vector Magnitude (EVM): EVM is widely used to
measure the quality of received signal. Mathematically, EVM
is defined as: EVM = 10 log10

(
E[|X̂−X|2]
E[|X|2]

)
, where X and X̂

are original and estimated signals, respectively.
Gross Throughput: Gross throughput is the over-the-air data
rate achieved by an STA or the AP. It can be inferred based
on the measured EVM by r =

Np

Nfft+Ncp
· b · Γ (EVM), where

r is the gross throughput, Np is the number of payload tones,
Nfft is FFT points, Ncp is the length of cyclic prefix, b is
the sampling rate, and Γ(EVM) is the average number of
bits carried by one tone, as specified in Table IV. Γ(EVM)
is determined by modulation order and (LDPC) coding rate.

STA 2STA 1

AP

(a) Two-user case.

STA 3STA 2STA 1

AP

(b) Three-user case.

STA 3STA 2STA 1 STA 4

AP

(c) Four-user case.

Fig. 12: Test scenarios used for evaluation of DLCS.

Net Throughput: Net throughput calculates the data rate
while taking into account channel sounding airtime over-
head. It can be expressed as: rnet =

tpayload

tpayload+toverhead
· r,

where tpayload and toverhead are the time duration of data
transmission and channel sounding, respectively. toverhead is
determined by the airtime used for transmitting BR, NDPA,
NDP, and TBRP frames. For simplicity, we do not consider
inter-frame space, re-transmission, and frame aggregation in
our calculations.
Comparison Baselines: For DLCS, we compare it with the
tone grouping approaches specified in 802.11ax. For notational
simplicity, we use TiGj to denote the 802.11 channel sounding
protocol with feedback type i ∈ {0, 1} and j ∈ {4, 16} tones
in each group. For DLRA, there is not a standardized base-
line for comparison. Hence, we implement the best resource
allocation effort onto IEEE 802.11ax. The best effort is full
utilization of available DoFs on each RU.

C. A Case Study for DLCS

We consider the case as shown in Fig. 12(b), where the
AP serves three STAs. The AP is placed at the square mark
in Fig. 11(c), and the three STAs are placed at the triangle
marks in the figure. Every RU serves these three STAs with
equal power allocation, and no resource allocation is involved
in this study. In what follows, we present our results.
Constellation: We perform downlink MU-MIMO transmis-
sions using both 802.11ax and DLCS channel sounding proto-
cols and collect the decoded signals at the three STAs. Fig. 13
shows the constellations of decoded signals at the three STAs.
The EVMs of the decoded signals are presented in Table V.
It can be seen from the measured EVMs that DeepMux offers
the best signal quality in the downlink transmissions. This is
because the DNNs at the AP can accurately recover CSI over
all tones based on the limited CSI feedback. It also can be
seen from Fig. 13 that DeepMux and 802.11-T1G4 achieve
similar signal quality (constellation) in the downlink. This is
because we used 802.11-T1G4 as the performance benchmark
to select the DNN parameters for DLCS in our experiments.
Feedback Overhead: DeepMux entails 0.6 kbit overhead
for CSI feedback from each STA. In contrast, 802.11-T0G4,
802.11-T1G4, and 802.11-T1G16 entails 4.9 kbit, 6.5 kbit, and
1.6 kbit overhead for CSI feedback, respectively.
EVM, Gross Throughput, and Net Throughput: Table V
presents our experimental results. We have the following
observations. First, in terms of EVM and gross throughput,
DLCS is slightly better than 802.11-T0G4, 802.11-T1G4, and
802.11-T1G16. Second, in terms of net throughput, DLCS
is significantly superior to 802.11-T0G4, 802.11-T1G4, and
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(b) 802.11-T0G4: Constellation of decoded signals at the three STAs.
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(c) 802.11-T1G4: Constellation of decoded signals at the three STAs.
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(d) 802.11-T1G16: Constellation of decoded signals at the three STAs.

Fig. 13: Constellations of decoded signals at STA 1 (left),
STA 2 (middle), and STA 3 (right), when the WLAN uses
different feedback protocols.

TABLE V: A case study for comparing DLCS of DeepMux
with 802.11 protocols.

STA 1 STA 2 STA 3 AP

D
ee

pM
ux EVM (dB) -23.5 -19.1 -24.0 –

Per RU Gross throughput (Mbps) 6.5 4.9 6.5 17.9
Net throughput (Mbps) 19.1 14.3 19.1 52.5

T
0G

4 EVM (dB) -20.1 -17.6 -21.3 –
Per RU Gross throughput (Mbps) 4.9 3.2 4.9 13.0

Net throughput (Mbps) 13.7 9.1 13.7 36.5

T
1G

4 EVM (dB) -23.0 -17.9 -23.6 –
Per RU Gross throughput (Mbps) 4.9 3.2 4.9 13.0

Net throughput (Mbps) 14.7 7.4 14.7 36.8

T
1G

16 EVM (dB) -19.8 -18.2 -20.7 –
Per RU Gross throughput (Mbps) 6.5 3.2 6.5 16.2

Net throughput (Mbps) 15.6 10.4 15.6 41.6

802.11-T1G16. This is not surprising because DLCS consumes
much lower airtime for CSI feedback compared to 802.11
channel sounding protocols.

D. Extensive Results of DLCS

We extend the case study to extensive experimental trials to
thoroughly examine the performance of DLCS. We consider
three cases: two-user, three-user, and four-user MIMO as
shown in Fig. 12. The AP serves these two/three/four users
exclusively on all RUs, with equal power allocation. Each STA
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Fig. 14: Comparison of DeepMux and 802.11 protocols in
two-user MIMO downlink transmission.
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Fig. 15: Comparison of DeepMux and 802.11 protocols in
three-user MIMO downlink transmission.
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Fig. 16: Comparison of DeepMux and 802.11 protocols in
four-user MIMO downlink transmission.

is placed at a randomly selected spot marked with a filled circle
in Fig. 11(c).
Two-User Case: Fig. 14 presents the comparison results of
DeepMux and 802.11 protocols in terms of EVM, gross
throughput, and net throughput. Per Fig. 14(a), DeepMux
achieves −27.1 dB EVM on average, while 802.11-T0G4,
802.11-T1G4, and 802.11-T1G16 reach −24.7 dB, −26.7 dB,
and −23.8 dB EVM, respectively. Per Fig. 14(b), Deep-
Mux slightly outperforms 802.11 protocols in terms of gross
throughput. DeepMux achieves 7.7 Mbps gross throughput per
RU on average. In contrast, 802.11-T0G4, 802.11-T1G4, and
802.11-T1G16 achieve 6.8 Mbps, 7.5 Mbps, and 6.4 Mbps
gross throughput per 26-tone RU, respectively.

Net throughput reflects the advantage of DLCS as it takes
into account airtime overhead in the calculation of through-
put. As shown in Fig. 14(c), DeepMux obtains 45.2 Mbps
net throughput on all RUs on average. In contrast, 802.11-
T0G4, 802.11-T1G4, and 802.11-T1G16 achieve 34.2 Mbps,
33.5 Mbps, and 38.2 Mbps net throughput, respectively. Deep-
Mux offers 31.6%, 34.3%, and 17.8% net throughput gains
compared to 802.11-T0G4, 802.11-T1G4, and 802.11-T1G16,
respectively.
Three-User Case: The observations in three-user case are
consistent with those in two-user case. Fig. 15 shows the ex-
perimental results. DeepMux slightly outperforms 802.11 pro-
tocols in terms of EVM and gross throughput. Per Fig. 15(a),
DeepMux achieves −20.4 dB EVM on average, while 802.11-
T0G4, 802.11-T1G4, and 802.11-T1G16 achieve −19.6 dB,
−20.1 dB, and −18.9 dB EVM, respectively. Per Fig. 15(b),
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Fig. 17: Test scenario for evaluating DeepMux in MU-MIMO-
OFDMA transmissions.

DeepMux achieves 4.9 Mbps gross throughput on average per
RU, while 802.11-T0G4, 802.11-T1G4, and 802.11-T1G16
achieve 4.1 Mbps, 4.6 Mbps, and 4.4 Mbps respectively.
DeepMux offers a significant gain of net throughput over
802.11 protocols. Per Fig. 15(c), DeepMux obtains 45.2 Mbps
net throughput on average. In contrast, 802.11-T0G4, 802.11-
T1G4, and 802.11-T1G16 achieve 36.1 Mbps, 34.8 Mbps, and
39.4 Mbps net throughput, respectively. This indicates that
DeepMux offers 25.2%, 30.0%, and 14.7% gains compared to
802.11-T0G4, 802.11-T1G4, and 802.11-T1G16, respectively.
Four-User Case: The observations in this case are consistent
with those in previous two cases. Fig. 16 presents the ex-
perimental results. In the end, DeepMux achieves 43.7 Mbps
net throughput on average. In contrast, 802.11-T0G4, 802.11-
T1G4, and 802.11-T1G16 achieve 35.2 Mbps, 34.6 Mbps,
and 37.0 Mbps net throughput, respectively. Numerically,
DeepMux offers 24.1%, 26.3%, and 18.1% net throughput
gains compared to 802.11-T0G4, 802.11-T1G4, and 802.11-
T1G16, respectively.

E. Overall Performance of DeepMux

Methodology: The full evaluation of DeepMux requires a
large-scale wireless testbed with many STAs to mimic real
802.11ax networks in MU-MIMO-OFDMA transmissions.
However, we do not have such a luxury. We therefore use a
hybrid approach that combines emulation and experimentation
to evaluate DeepMux. Fig. 17 shows our testbed setting, where
the AP serves 4 real STAs and 16 virtual STAs. The 4 real
STAs perform over-the-air transmissions, while the 16 virtual
STAs are created by the AP based on the pre-stored CSI from
other locations. The virtual STAs are used for DLRA. In the
downlink transmission, the AP sends precoded signals to all
(real and virtual) STAs, and the performance is measured at
STAs.
A Close Look into DLRA: As a case study, we place
one of real STAs at the locations marked by triangle 1 in
Fig. 11(c). Fig. 18(a) shows the SNR values from the real and
virtual STAs. The reported SNR values are first preprocessed
for normalization, as shown in Fig. 18(b). The normalized
values are then fed into a DNN for RU assignment. Fig. 18(c)
shows the RU assignment results from the DNN. With the RU
assignment results from DNN, the optimization problem in (7)
degrades to an LP problem. The LP problem is then solved
to obtain the power allocation results, which are shown in
Fig. 18(d).

Referring to Fig. 18(d), the rightmost column denotes
RU assignment and allocated power to the STA of interest.
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Fig. 18: A case study on resource allocation by DLRA.
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Fig. 19: EVM of decoded signal on first STA over first RU.

Fig. 19 shows the constellation of received signal by the
mentioned STA on the first RU with the aid of DeepMux
and existing protocols in 802.11ax. The results reveal superior
performance of DeepMux in terms of EVM. For this STA,
the gross throughput achieved on the first RU is 2.4 Mbps,
1.2 Mbps, 1.2 Mbps, and 0.8 Mbps with DeepMux, 802.11-
T0G4, 802.11-T1G4, and 802.11-T1G16, respectively. The net
throughput achieved by this user on the first RU is 9.1 Mbps,
4.9 Mbps, 6.5 Mbps, and 4.7 Mbps with DeepMux, 802.11-
T0G4, 802.11-T1G4, and 802.11-T1G16, respectively. Over
all RUs, DeepMux obtains 43.5 Mbps net throughput, while
802.11-T0G4, 802.11-T1G4, and 802.11-T1G16 respectively
achieve 31.7 Mbps, 29.9 Mbps, and 37.8 Mbps.
Extensive Results: To obtain more comprehensive results,
we place the four real STAs at different locations marked
with filled circles in Fig. 11(c). The experimental results are
summarized as follows.
• EVM: Fig. 20(a) presents the measured EVM at STAs.

On average, DeepMux achieves −11.2 dB EVM for
STAs, while 802.11-T0G4, 802.11-T1G4, and 802.11-
T1G16 reach −10.1 dB, −10.9 dB, and −8.6 dB EVM,
respectively.
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Fig. 20: Comparison of DeepMux and 802.11 protocols when
an 8-antenna AP serves 20 stations on 20 MHz bandwidth.
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Fig. 21: Average net throughput achieved by DeepMux and
802.11 protocols.

• Gross Throughput per RU: Fig. 20(b) presents the
gross throughput per RU. Specifically, DeepMux achieves
1.6 Mbps gross throughput per 26-tone RU. In contrast,
802.11-T0G4, 802.11-T1G4, and 802.11-T1G16 achieve
1.4 Mbps, 1.6 Mbps, and 1.1 Mbps, respectively.

• Net Throughput: Fig. 20(c) shows the net throughput
achieved by different protocols, and Fig. 21 shows the
average net throughput at the AP. Specifically, Deep-
Mux achieves 45.9 Mbps net throughput on average.
In contrast, 802.11-T0G4, 802.11-T1G4, and 802.11-
T1G16 achieve 35.7 Mbps, 32.0 Mbps, and 36.4 Mbps,
respectively. The net throughput gain of DeepMux is
34.9% compared to 802.11-T0G4, 43.6%, compared to
802.11-T1G4, and 26.3% compared to 802.11-T1G16.

VIII. CONCLUSION

In this paper, we presented DeepMux, a deep-learning-
based approach to enhance the efficiency of downlink MU-
MIMO-OFDMA transmissions in 802.11ax networks. Deep-
Mux is designed upon two components, namely DLCS and
DLRA, both of which reside in APs and impose no compu-
tation/communication burden to Wi-Fi clients. DLCS lever-
ages DNNs to reduce overhead of CSI feedback in 802.11
protocols. It uses uplink channels to train the DNNs for
downlink channels, making the training process easy to imple-
ment. Numerical results show that it can reduce the sounding
overhead by 62.0%∼90.5% without sacrificing CSI feedback
accuracy. DLRA tackles an MILP resource allocation problem
by decoupling its integer and continuous optimization sub-
problems and employing a DNN to compute a solution to the
integer part. Numerical results show that DLRA can achieve
98.9% optimality in RU assignment while bearing a low
computational complexity. We have built a wireless testbed
to examine the performance of DeepMux in an indoor envi-
ronment. Experimental results show that DeepMux increases

network throughput by 26.3%∼43.6% compared to 802.11
protocols.
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